# Ion-Lab® for IC and ISE

The Ion-Lab® products also includes a wide range of Single-Component and Multi-Component anion and cation solutions for ion chromatography (IC) and ion-selective electrode (ISE) analysis applications.

| lon•                                         | Code      | Description •                    | Conc. | Pack. | Source                                        |
|----------------------------------------------|-----------|----------------------------------|-------|-------|-----------------------------------------------|
| F-                                           | CRMFW     | Fluoride in H <sub>2</sub> O     | M-Y   | •     | NH <sub>4</sub> F                             |
| Cl-                                          | CRMCLW    | Chloride in H <sub>2</sub> O     | M-Y   | •     | NH <sub>4</sub> Cl                            |
| Br <sup>-</sup>                              | CRMBRW    | Bromide in H <sub>2</sub> O      | M-Y   | •     | NH <sub>4</sub> Br                            |
| I <sup>c</sup>                               | CRMIW     | lodide in H₂O                    | M-Y   | •     | NH <sub>4</sub> I                             |
| NO <sub>3</sub>                              | CRMNO3W   | Nitrate in H <sub>2</sub> O      | M-Y   | •     | NaNO <sub>3</sub>                             |
| NO <sub>2</sub>                              | CRMNO2W   | Nitrite in H <sub>2</sub> O      | M-Y   | •     | NaNO <sub>2</sub>                             |
| PO <sub>4</sub> 3-                           | CRMPO4W   | Phosphate in H₂O                 | M-Y   | •     | $NH_4H_2PO_4$                                 |
| SO <sub>4</sub> <sup>2-</sup>                | CRMSO4W   | Sulphate in H₂O                  | M-Y   | •     | Na <sub>2</sub> SO <sub>4</sub>               |
| BrO <sub>3</sub>                             | CRMBRO3W  | Bromate in H <sub>2</sub> O      | M     | •     | KBrO <sub>3</sub>                             |
| CIO-                                         | CRMCLOW   | Hypochlorite in H <sub>2</sub> O | M     | •     | NaClO                                         |
| ClO <sub>2</sub>                             | CRMCLO2W  | Chlorite in H <sub>2</sub> O     | M     | •     | NaClO <sub>2</sub>                            |
| ClO <sub>3</sub> -                           | CRMCLO3W  | Chlorate in H₂O                  | M     | •     | NaClO <sub>3</sub>                            |
| ClO <sub>4</sub>                             | CRMCLO4W  | Perchlorate in H <sub>2</sub> O  | M     | •     | KClO <sub>4</sub>                             |
| IO <sub>3</sub>                              | CRMIO3W   | lodate in H₂O                    | M     | •     | KIO <sub>3</sub>                              |
| NH <sub>4</sub> <sup>+</sup>                 | CRMNH4W   | Ammonium in H <sub>2</sub> O     | M     | •     | NH₄Cl                                         |
| CN-                                          | CRMCNW    | Cyanide in H <sub>2</sub> O      | M     | •     | NaCN                                          |
| CO <sub>3</sub> 2-                           | CRMCO3W   | Carbonate in H <sub>2</sub> O    | M     | •     | Na <sub>2</sub> CO <sub>3</sub>               |
| CrO <sub>4</sub> <sup>2-</sup>               | CRMCRO4W  | Chromate in H <sub>2</sub> O     | M     | •     | K <sub>2</sub> CrO <sub>4</sub>               |
| Cr <sub>2</sub> O <sub>7</sub> <sup>2-</sup> | CRMCR207W | Dichromate in H <sub>2</sub> O   | M     | •     | K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> |
| SCN-                                         | CRMSCNW   | Thiocyanate in H <sub>2</sub> O  | M     | •     | KSCN                                          |
| SiO <sub>3</sub> <sup>2-</sup>               | CRMSIO3W  | Silicate in H <sub>2</sub> O     | M     | •     | Na <sub>2</sub> SiO <sub>3</sub>              |
| S <sub>2</sub> O <sub>3</sub> <sup>2-</sup>  | CRMS2O3W  | Thiosulphate in H <sub>2</sub> O | M     | •     | $Na_2S_2O_3$                                  |

Single-component solutions are available in two nominal concentration (1000 and 10000 mg/L), and Mix solutions are available in multiple concentrations. They are packaged in five sizes: 25-50-125-250-500 ml. The product code is similar to that of CRMs for ICP

### Ion-Lab® CRM Mixtures for IC

The Ion-Lab® catalog includes a large number of CRM mixtures of cations and anions for Ion Chromatography analysis, which we formulate at different concentrations.

E.g.: Ion-Lab® MIXNO8 (8 anions) Lgs.D. 18/2023 (ITA) (Drinking Water): BrO<sub>3</sub> at 0.1 mg/l;  $NO_2^-$  at 0.5 mg/l;  $ClO_2^-$ ,  $ClO_3^-$  at 2.5 mg/l;  $F^-$  at 15 mg/l;  $NO_3^-$  at 500 mg/l;  $Cl^-$ ,  $SO_4^{2^-}$ at 2500 mg/l in HP-Water, 125 ml in LDPE Bottle&STCBag®. Code: CRMN08WZ-125.

E.g.: Ion-Lab® MIXTO7 (7 anions): NO<sub>2</sub> at 50 mg/l; F at 100 mg/L; Br, PO<sub>4</sub> at 500 mg/L; Cl<sup>-</sup>, NO<sub>2</sub><sup>-</sup>, SO<sub>4</sub><sup>2</sup>- at 1000 mg/L in HP-Water, 125 ml in LDPE Bottle&STCBag<sup>®</sup>, Code: CRMT07WZ-125.

Ion-Lab® Mixes are designed to meet the Official Methods for anion analysis: EPA 300.0/300.1, ASTM D4327, Legislative Decree 18/2023 (ITA), ISO 17294:2024 in drinking and environmental waters; ASTM D8234-19 in high salinity waters; EPA 9056A in liquid and solid wastes; ISO 20702:2017 in fertilizers and soils; ISO 20702:2017 in fertilizers/soils; USP (1065) in Pharmaceuticals, etc.

## Ion-Lab® CRM Chemical-Physical Properties

The catalog provides also a large number of CRM products for the validation of chemicalphysical methods such as: Conductivity, pH, Refractive Index, etc.

### "Custom" Mixtures and Products

We are specialized in the design and production of CRMs that are released to the market only after at least two batches that have been studied for the entire assigned shelf-life. However, we are able to satisfy every request by creating "CUSTOM" inorganic and organic solutions for applications with techniques such as ICP-OES, ICP-MS, IC, GC-MS, LC-MS, etc. They are prepared with Production and Quality Control Procedures similar to those used for CRMs, but without LTS (Long-Term Stability) Studies. "CUSTOM" products are made with NIST-traceable CRM raw materials, but, as they lack LTS studies, they will not be accompanied by a Reference Material Certificate, but rather with a Product Data Sheet showing the certified property value of each component and the associated uncertainty (U%), lacking only the contribution of u% of LTS study. "Custom" mixtures can be created by choosing the concentration of each analyte, the packaging, and the matrix.

The application form for requesting "Custom" products and mixtures is available online at the following website: www.crmlabstandard.com or, the customes can send the request by email to offerte2@labinstruments.it with the product list and CAS.

# Ion-Lab® Explorer Kits



Ion-Lab® Explorer Kit 64 (64 components) EN ISO 17294-2:2024 (Water Quality)

- Calibration Mix 1: As and Se at 20 mg/L; Ag, Al, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, La, Li, Mg, Mn, Ni, Pb, Sr, Th, Tl, U, V, Zn at 10 mg/L in HP-Water + 2% HNO<sub>3</sub>. 125 ml in LDPE Bottle&STCBag®. Code: CRMC27NZ-125
- Calibration Mix 2: Ga, Ge, Hf, In, Ir, Pd, Pt, Rh, Ru, Te at 10 mg/L in HP-Water + 10% HCl. 125 ml in LDPE Bottle&STCBag®. Code: CRMH10HX-125
- Calibration Mix 3: Dy, Er, Eu, Gd, Ho, Lu, Nd, Pr, Sc, Sm, Tb, Tm, Yb at 10 mg/L in HP-Water + 2% HNO3. 125 ml in LDPE Bottle&STCBag®. Code: CRME13NX-125
- Calibration Mix 4: Hg a conc. 1 mg/L; Au, Mo, Sb, Sn, W, Zr a conc. 10 mg/L in HP-Water + 10% HCl. 125 ml in LDPE Bottle&STCBag®. Code: CRMU07HZ-125
- Calibration Mix 5: Cs, K, Na, P, Rb. at 1000 mg/L in HP-Water + 2% HNO<sub>3</sub>. 125 ml in LDPE Bottle&STCBag®. Code: CRMM05NM-125
- Internal Reference Standard Solution: Re and Y at 5 mg/L in HP-Water + 2% HNO<sub>3</sub>, 125 ml in LDPE Bottle&STCBag®. Code: CRMG02NV-125
- Optimization Solution: Ba, Ce, Cu, In, La, Mg, Pb, Rh, U at 10 mg/L in HP-Water + 2% HNO<sub>3</sub>. 125 ml in LDPE Bottle&STCBag®. Code: CRMK09NX-125
- Matrix Solution: PO<sub>4</sub>3- at 25 mg/L; SO<sub>4</sub>2- at 100 mg/L; Ca at 200 mg/L; Cl<sup>-</sup> at 300 mg/L in HP-Water + 1% HNO3. 125 ml in LDPE Bottle&STCBag®. Code: CRMK04NZ-125

## Certificates and **Accreditations**

- o ISO 17034:2016
- o ISO/IEC 17025:2017 o UNI EN ISO 14001:2015
- UNI EN ISO 9001:2015
- o UNI/PdR 125:2022
- Synesgy ESG 2025









### Certificates downloads

- · www.accredia.it
- www.pjlabs.com
- www.crmlabstandard.com/it/downloads

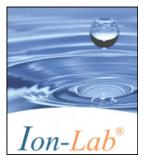
High Pure Chemicals & LabStandard Division Tel: +39 080 4969746-9 - Fax: +39 080 2121749 SS 172 (Putignano-Alberobello) km 28+200 70013 Castellana Grotte (BA) Italy Website: www.crmlabstandard.com E-mail: info@crmlabstandard.com







# LAB.INSTRUMENTS S.R.L.



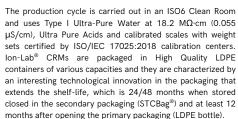



www.crmlabstandard.com

Our solution is your solution

# Ion-Lab<sup>®</sup> Overview




The Ion-Lab® products offers high-quality, competitively priced UNI CEI EN ISO 17034:2017 CRM solutions for AA, ICPOES, ICPMS, ICPMSMS, and IC analysis.

Designed and manufactured under the ISO 17034:2017 accredited procedure, Ion-Lab® CRMs are included in the accreditation scope as part of Table A1 of UNI CEI ISO/TR10989:2019.

They are suitable for all method validation, uncertainty determination, and declaration of metrological traceability to units of the International System of Measurement (ISM) as required by ISO/IEC 17025:2018 (Chapters 6.4 and 6.5).

The accuracy of all Ion-Lab® CRM standards is verified against NIST Primary Standards, where available, or ISO 17034 CRM from other sources.





Ion-Lab® CRMs are accompanied by:

- Certificate of Reference Materials compliant with ISO 33401:2024 with declared metrological traceability to the SI measurement. They state the certified property value (analytical concentration) and its uncertainty, the density of the solution, and the certified amount of High-Pure Acid in solution;
- Safety data sheet compliant with REACH Regulation (EC) 2020/878 in English or the language of the destination country.



# CRM Products Portfolio for AA, ICP-OES, ICP-MS

The Ion-Lab® CRM products for AA, ICP-OES, ICP-MS consists of Single Component solutions of over 80 different elements (including speciation elements, As, Cr, etc.), some isotopes (6Li, etc.) and many Multi-Element Mixes containing up to over 50 elements appropriately selected to meet the main standards or methodologies released by EPA, ASTM, EU, etc. (e.g. EPA 200.7, EPA 200.8, EPA6020, EU 10/2011, Italian Legislative Decree 18/2023, ISO 17294:2024, etc.).

| Element         | Code    | <b>Description</b>                            | Conc.     | Pack. | Source                                                                        | Element <sup>®</sup> | Code   | Description •                                 | Conc.   | Pack. | Source                                                                         |
|-----------------|---------|-----------------------------------------------|-----------|-------|-------------------------------------------------------------------------------|----------------------|--------|-----------------------------------------------|---------|-------|--------------------------------------------------------------------------------|
| Ag              | CRMAGN  | Silver in HNO <sub>3</sub> 2-2-2-5 %          | X-C-M-Y   | •     | AgNO <sub>3</sub>                                                             |                      |        |                                               |         |       |                                                                                |
| Al              | CRMALN  | Aluminium in HNO <sub>3</sub> 2-2-2-5 %       | X-C-M-Y   | •     | Al(NO <sub>3</sub> ) <sub>3</sub>                                             | N                    | CRMNHW | Nitrogen in H <sub>2</sub> O                  | M-Y     | •     | NH <sub>4</sub> Cl                                                             |
| As              | CRMASN  | Arsenic in HNO <sub>3</sub> 2-2-2-2 %         | X-C-M-Y   | •     | As Semimetal                                                                  | N                    | CRMN3N | Nitrogen in H <sub>2</sub> O                  | M-Y     | •     | NaNO <sub>2</sub>                                                              |
| As (III)        | CRMAS3H | Arsenic (III) in HCl 0.5 %                    | M         | •     | As <sub>2</sub> O <sub>3</sub>                                                | N                    | CRMN5W | Nitrogen in H₂O                               | M-Y     | •     | NaNO <sub>3</sub>                                                              |
| As (V)          | CRMAS5W | Arsenic (V) in H <sub>2</sub> O               | M         | •     | As <sub>2</sub> O <sub>5</sub>                                                | Na                   | CRMNAN | Sodium in HNO <sub>3</sub> 0.5-0.5-0.5-2 %    | X-C-M-Y | •     | NaNO <sub>3</sub>                                                              |
| Au              | CRMAUH  | Gold in HCl 2-5-7-10 %                        | X-C-M-Y   | •     | HAuCl₄                                                                        | Ni                   | CRMNIN | Nickel in HNO <sub>3</sub> 2-2-2-5 %          | X-C-M-Y | •     | Ni(NO <sub>3</sub> ) <sub>2</sub>                                              |
| В               | CRMBW   | Boron in H <sub>2</sub> O                     | M-Y       | •     | H <sub>3</sub> BO <sub>3</sub>                                                | Nb                   | CRMNBF | Niobium in HF 0.1-2 %                         | M-Y     | •     | (NH <sub>4</sub> )NbF <sub>6</sub>                                             |
| Ba              | CRMBAN  | Barium in HNO <sub>3</sub> 0.5-0.5-0.5-2 %    | X-C-M-Y   | •     | Ba(NO <sub>3</sub> ) <sub>2</sub>                                             | Os                   | CRMOSH | Osmium in HCl 7-7-7 %                         | X-C-M   | •     | (NH <sub>4</sub> ) <sub>2</sub> OsCl <sub>6</sub>                              |
| Be              | CRMBEN  | Beryllium in HNO <sub>3</sub> 1-1-2-5 %       | X-C-M-Y   | •     | Be <sub>4</sub> O(C <sub>2</sub> H <sub>3</sub> O <sub>2</sub> ) <sub>6</sub> | P                    | CRMPW  | Phosphorus in H <sub>2</sub> O                | X-C-M-Y | •     | H <sub>3</sub> PO <sub>4</sub>                                                 |
| Bi              | CRMBIN  | Bismuth in HNO <sub>3</sub> 5-5-5-5 %         | X-C-M-Y   | •     | Bi(NO <sub>3</sub> ) <sub>3</sub>                                             | Pb                   | CRMPBN | Lead in HNO <sub>3</sub> 0.5-0.5-0.5-0.5 %    | X-C-M-Y | •     | Pb(NO <sub>3</sub> ) <sub>2</sub>                                              |
| С               | CRMCW   | Carbon in H₂O                                 | M-Y       | •     | C <sub>6</sub> H <sub>8</sub> O <sub>7</sub> (Citric Acid)                    | Pd                   | CRMPDN | Palladium in HNO <sub>3</sub> 2-10 %          | M-Y     | •     | Pd(NO <sub>3</sub> ) <sub>2</sub>                                              |
| Ca              | CRMCAN  | Calcium in HNO <sub>3</sub> 0.5-0.5-0.5-2 %   | X-C-M-Y   | •     | Ca(NO <sub>3</sub> ) <sub>2</sub>                                             | Pr                   | CRMPRN | Praseodymium in HNO <sub>3</sub> 2-2-2-5 %    | X-C-M-Y | •     | Pr(NO <sub>3</sub> ) <sub>3</sub>                                              |
| Cd              | CRMCDN  | Cadmium in HNO <sub>3</sub> 2-2-2-3 %         | X-C-M-Y   | •     | Cd(NO <sub>3</sub> ) <sub>3</sub>                                             | Pt                   | CRMPTH | Platinum in HCl 5-6-7-10 %                    | X-C-M-Y | •     | H <sub>2</sub> PtCl <sub>6</sub>                                               |
| Ce              | CRMCEN  | Cerium in HNO <sub>3</sub> 5-5-5-5 %          | X-C-M-Y   | •     | Ce(NO <sub>3</sub> ) <sub>2</sub>                                             | Rb                   | CRMRBN | Rubidium in HNO <sub>3</sub> 0.5-2 %          | M-Y     | •     | RbNO <sub>3</sub>                                                              |
| Co              | CRMCON  | Cobalt in HNO <sub>3</sub> 2-2-2-3 %          | X-C-M-Y   | •     | Co(NO <sub>3</sub> ) <sub>2</sub>                                             | Re                   | CRMREN | Rhenium in HNO <sub>3</sub> 0.1-3 %           | M-Y     | •     | NH <sub>4</sub> ReO <sub>4</sub>                                               |
| Cr              | CRMCRN  | Chromium in HNO <sub>3</sub> 2-2-2-5 %        | X-C-M-Y   | •     | Cr(NO <sub>3</sub> ) <sub>3</sub>                                             | Rh                   | CRMRHH | Rhodium in HCl 2-5-5-20 %                     | X-C-M-Y | •     | Rh(NO <sub>3</sub> ) <sub>3</sub>                                              |
| Cr (VI)         | CRMCR6W | Chromium (VI) in H₂O                          | X-C-M     | •     | (NH <sub>4</sub> ) <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub>                | Ru                   | CRMRUH | Ruthenium in HCl 7-20 %                       | M-Y     | •     | RuCl <sub>3</sub>                                                              |
| Cs              | CRMCSN  | Caesium in HNO <sub>3</sub> 0.1-0.1-0.1-0.5 % | X-C-M-Y   |       | CsNO <sub>3</sub>                                                             | S                    | CRMSW  | Sulfur in H <sub>2</sub> O                    | X-C-M-Y | •     | H <sub>2</sub> SO <sub>4</sub>                                                 |
| Cu              | CRMCUN  | Copper in HNO <sub>3</sub> 2-2-2-3 %          | X-C-M-Y   | •     | Cu(NO <sub>3</sub> ) <sub>2</sub>                                             | Sb                   | CRMSBN | Antimonium in HNO <sub>3</sub> 1-1-1-1 %      | X-C-M-Y | •     | Sb Metal                                                                       |
| Dy              | CRMDYN  | Dysprosium in HNO <sub>3</sub> 2-5 %          | M-Y       | •     | Dy(NO <sub>3</sub> ) <sub>3</sub>                                             | Sc                   | CRMSCN | Scandium in HNO <sub>3</sub> 2-5-5-5 %        | X-C-M-Y | •     | Sc(NO <sub>3</sub> ) <sub>3</sub>                                              |
| Er              | CRMERN  | Erbium in HNO <sub>3</sub> 2-5 %              | M-Y       | •     | Er(NO <sub>3</sub> ) <sub>3</sub>                                             | Se                   | CRMSEN | Selenium in HNO <sub>3</sub> 2-2-2-3 %        | X-C-M-Y | •     | Se Metal                                                                       |
| Eu              | CRMEUN  | Europium in HNO <sub>3</sub> 2-5 %            | M-Y       | •     | Eu(NO <sub>3</sub> ) <sub>3</sub>                                             | Si                   | CRMSIW | Silicon in H₂O                                | X-C-M-Y | •     | (NH <sub>4</sub> ) <sub>2</sub> SiF <sub>6</sub>                               |
| Fe              | CRMFEN  | Iron in HNO <sub>3</sub> 2-2-2-5 %            | X-C-M-Y   |       | Fe(NO <sub>3</sub> ) <sub>2</sub>                                             | Sm                   | CRMSMN | Samarium in HNO <sub>3</sub> 2-2-2-5 %        | X-C-M-Y | •     | Sm(NO <sub>3</sub> ) <sub>3</sub>                                              |
| Ga              | CRMGAN  | Gallium in HNO <sub>3</sub> 5-5-5 %           | C-M-Y     | •     | Ga(NO <sub>3</sub> ) <sub>3</sub>                                             | Sn                   | CRMSNN | Tin in HNO <sub>3</sub> 5-5-0.1-0.1 %         | X-C-M-Y | •     | Sn Metal                                                                       |
| Ge              | CRMGEW  | Germanium in H₂O                              | X-C-M-Y   | •     | (NH <sub>4</sub> ) <sub>2</sub> GeF <sub>6</sub>                              | Sr                   | CRMSRN | Strontium in HNO <sub>3</sub> 0.5-0.5-0.5-2 % | X-C-M-Y | •     | Sr(NO <sub>3</sub> ) <sub>2</sub>                                              |
| Gd              | CRMGDN  | Gadolinium in HNO <sub>3</sub> 2-5 %          | M-Y       | •     | Gd(NO <sub>3</sub> ) <sub>3</sub>                                             | Ta                   | CRMTAF | Tantalum in HF 0.2-2 %                        | M-Y     | •     | $(NH_4)_2TaF_7$                                                                |
| Hf              | CRMHFF  | Hafnium in HF tr-0.01-0.1-1 %                 | X-C-M-Y   | •     | HfO <sub>2</sub>                                                              | Tb                   | CRMTBN | Terbium in HNO <sub>3</sub> 2-2-2-5 %         | X-C-M-Y | •     | Tb(NO <sub>3</sub> ) <sub>3</sub>                                              |
| Ho              | CRMHON  | Holmium in HNO <sub>3</sub> 2-2-2-5 %         | X-C-M-Y   |       | Ho(NO <sub>3</sub> ) <sub>3</sub>                                             | Te                   | CRMTEN | Tellurium in HNO <sub>3</sub> 2-2-2-5 %       | X-C-M-Y | •     | Te Metal                                                                       |
| Hg              | CRMHGN  | Mercury in HNO <sub>3</sub> 5-5-5-5 %         | I-X-C-M-Y | •     | Hg(NO <sub>3</sub> ) <sub>2</sub>                                             | Th                   | CRMTHN | Thorium in HNO <sub>3</sub> 2-2-5-5 %         | X-C-M-Y | •     | Th(NO <sub>3</sub> ) <sub>4</sub>                                              |
| In              | CRMINN  | Indium in HNO <sub>3</sub> 2-2-2-5 %          | X-C-M-Y   | •     | In(NO <sub>3</sub> ) <sub>3</sub>                                             | Ti                   | CRMTIN | Titanium in HNO <sub>3</sub> 2-2-0.1-0.1 %    | X-C-M-Y | •     | (NH <sub>4</sub> ) <sub>2</sub> TiF <sub>6</sub>                               |
| Ir              | CRMIRH  | Iridium in HCl 2-5-7-10 %                     | X-C-M-Y   | •     | H₂IrCl <sub>6</sub>                                                           | π                    | CRMTLN | Thallium in HNO <sub>3</sub> 1-1-1-5 %        | X-C-M-Y | •     | TINO <sub>3</sub>                                                              |
| K               | CRMKN   | Potassium in HNO <sub>3</sub> 0.5-0.5-0.5-2 % | X-C-M-Y   | •     | KNO <sub>3</sub>                                                              | Tm                   | CRMTMN | Thulium in HNO <sub>3</sub> 2-2-2-5 %         | X-C-M-Y | •     | Tm(NO <sub>3</sub> ) <sub>3</sub>                                              |
| La              | CRMLAN  | Lanthanum in HNO <sub>3</sub> 2-5 %           | M-Y       | •     | La(NO <sub>3</sub> ) <sub>3</sub>                                             | U                    | CRMUN  | Uranium in HNO <sub>3</sub> 2-2-2-2 %         | X-C-M-Y | •     | $UO_2(NO_3)_2$                                                                 |
| <sup>6</sup> Li | CRM6LIN | 6-Lithium in HNO <sub>3</sub> 2-2-2 %         | X-C-M     | •     | <sup>6</sup> LiNO <sub>3</sub>                                                | V                    | CRMVN  | Vanadium in HNO <sub>3</sub> 2-2-2-5 %        | X-C-M-Y | •     | NH <sub>4</sub> VO <sub>3</sub>                                                |
| Li              | CRMLIN  | Lithium in HNO <sub>3</sub> 0.5-0.5-0.5-2 %   | X-C-M-Y   | •     | LiNO <sub>3</sub>                                                             | W                    | CRMWF  | Wolframium in HF tr-0.01-0.1-1 %              | X-C-M-Y | •     | (NH <sub>4</sub> ) <sub>6</sub> H <sub>2</sub> W <sub>12</sub> O <sub>40</sub> |
| Lu              | CRMLUN  | Lutetium in HNO <sub>3</sub> 2-2-2-5 %        | X-C-M-Y   |       | Lu(NO <sub>3</sub> ) <sub>3</sub>                                             | Υ                    | CRMYN  | Yttrium in HNO <sub>3</sub> 2-2-2-2 %         | X-C-M-Y | •     | Y(NO <sub>3</sub> ) <sub>3</sub>                                               |
| Mg              | CRMMGN  | Magnesium in HNO <sub>3</sub> 0.5-0.5-0.5-2 % |           | ě     | Mg(NO <sub>3</sub> ) <sub>2</sub>                                             | Yb                   | CRMYBN | Ytterbium in HNO <sub>3</sub> 2-2-2-5 %       | X-C-M-Y | •     | Yb(NO <sub>3</sub> ) <sub>3</sub>                                              |
| Mn              | CRMMNN  | Manganese in HNO <sub>3</sub> 2-2-2-3 %       | X-C-M-Y   | •     | Mn(NO <sub>3</sub> ) <sub>2</sub>                                             | Zn                   | CRMZNN | Zinc in HNO <sub>3</sub> 2-2-2-2 %            | X-C-M-Y | •     | Zn(NO <sub>3</sub> ) <sub>2</sub>                                              |
| Мо              | CRMMOW  | Molibdenum in H₂O                             | X-C-M-Y   | •     | (NH <sub>4</sub> ) <sub>2</sub> MoO <sub>4</sub>                              | Zr                   | CRMZRF | Zirconium in HF tr-0.01-0.1-1 %               | X-C-M-Y | •     | Zr(NO <sub>3</sub> ) <sub>4</sub>                                              |
|                 |         |                                               |           |       |                                                                               |                      |        |                                               |         |       | *tr = trace amount                                                             |

Available Packaging: 25-50-125-250-500 ml

Available Concentrations: 1-10-100-1000-10000 mg/l

^tr = trace amount

### Each analyte concentration corresponds to a differently acidified aqueous matrix in order to guarantee the best stability.

E.g.: for the element "Ag" we have the possibility to choose between four different concentrations: X-C-M-Y expressed as 10-100-1000 and 10000 mg/l. Next to it, in the description, we read "Silver in HNO3 2-2-2-5 %". This indicates that for each analyte concentration there is a specific matrix. In this case, for the concentrations: 10-100-1000 we have a matrix of HP-Water with HNO<sub>3</sub> at 2%, while for Ag at 10000 mg/l the matrix is HP-Water with HNO<sub>3</sub> at 5%.

Each Ion-Lab® ISO 17034 has its own identification code. After the suffix "CRM" there are: The symbol of the Element or the Ion, in capital letters, followed by the valence in cardinal number (e.g., CR6 for Cr (VI)); Matrix identifier using the letters W, N, H, and F (W for HP Water, N for Nitric Acid, H for Hydrochloric Acid, and F for Hydrofluoric Acid) in a quantity predefined in the description table above; Analyte concentration: I = 1, X = 10, C = 100, M = 1000, and Y = 10000 mg/l; Packaging type: (-)25-50-125-250-500 ml.

E.g.: CRMALNM-125 indicates an ISO17034 CRM of Aluminium (Al) in a Nitric Acid (N) solution at 1000 mg/l (M) concentration in the 125 ml package.

### Ion-Lab®: TC - TIC - TOC

| Carbon Form | Code    | Description •                              | Conc. | Pack. | Source                                                                             |
|-------------|---------|--------------------------------------------|-------|-------|------------------------------------------------------------------------------------|
| TC          | CRMTCW  | Total Carbon in H <sub>2</sub> O           | С-М   | •     | KHP <sup>□</sup> -NaHCO <sub>3</sub> -Na <sub>2</sub> CO <sub>3</sub> <sup>Δ</sup> |
| TIC         | CRMTICW | Total Inorganic Carbon in H <sub>2</sub> C | C-M   | •     | NaHCO <sub>3</sub> -Na <sub>2</sub> CO <sub>3</sub> 1:1                            |
| TOC         | CRMTOCW | Total Organic Carbon in H <sub>2</sub> O   | C-M   | •     | KHP <sup>□</sup>                                                                   |

☐ Potassium Hydrogen Phthalate (KHP).

△ KHP-NaHCO<sub>3</sub>-Na<sub>2</sub>CO<sub>3</sub> are in the ratio 1:1:1.

## Ion-Lab® Blanks - Dilution Matrices & Eluent

The catalog also includes various matrices and eluents for both ion chromatography (IC) and ICP-OES and ICP-MS, such as:

- High Purity Water (HP-Water) for ICP-OES and ICP-MS with a conductivity ≤ 0.055
   uS·cm<sup>-1</sup> (18.2 MΩ·cm) at 25°C in 500 ml packages, code CRMH2O-500;
- Nitric Acid Matrix Blank for ICP-OES and ICP-MS, in 500 ml packages, at 5% with code CRMHNO3V-500; at 2% with code CRMHNO3II-500; and finally, at 1% with code CRMHNO3I-500 in HP-Water:
- Na<sub>2</sub>CO<sub>3</sub>/NaHCO<sub>3</sub> eluent for IC at different concentrations in HP-Water (See catalog).